
DeliGrasp: Inferring Object Properties with LLMs for
Adaptive Grasp Policies

William Xie1, Jensen Lavering1, Nikolaus Correll1

Fig. 1: Large language models (LLMs) have rich physical knowledge about worldly objects, but cannot directly reason robot grasps
for them. Paired with open-world localization and pose estimation (left), our method (middle), queries LLMs for the salient physical
characteristics of mass, friction, and compliance as the basis for an adaptive grasp controller. DeliGrasp policies successfully grasp delicate
and deformable objects (right). These policies also produce compliance feedback as measured spring constants, which we leverage for
downstream tasks like picking ripe produce (middle).

Abstract— Large language models (LLMs) can provide rich
physical descriptions of most worldly objects, allowing robots
to achieve more informed and capable grasping. We leverage
LLMs’ common sense physical reasoning and code-writing
abilities to infer an object’s physical characteristics—mass m,
friction coefficient µ, and spring constant k—from a semantic
description, and then translate those characteristics into an
executable adaptive grasp policy. Using a current-controllable,
two-finger gripper with a built-in depth camera, we demon-
strate that LLM-generated, physically-grounded grasp policies
outperform traditional grasp policies on a custom benchmark of
12 delicate and deformable items including food, produce, toys,
and other everyday items, spanning two orders of magnitude
in mass and required pick-up force. We also demonstrate how
compliance feedback from DeliGrasp policies can aid in down-
stream tasks such as measuring produce ripeness. Our code and
videos are available at: https://deligrasp.github.io

I. INTRODUCTION

Large language models (LLMs) are able to supervise robot
control and learning in manipulation from high-level step-by-
step task planning [1]–[3] to low-level motion planning [4],

1All authors are with the University of Colorado at Boulder, Boulder,
CO. Corresponding email: wixi6454@colorado.edu

[5]. LLMs additionally aid in robot manipulation via under-
standing a given object’s semantic properties and delineating
appropriate grasp positions conditioned on those semantic
affordances [6]–[8].

These works usually assume that the acts of “picking”
and “placing” are straightforward tasks. This is not the
case for contact-rich manipulation. Existing methods for
LLM-supervised robot control cannot account for tasks like
grasping a paper airplane or origami, deformable plastic
bags containing rice or dry noodles, or particularly ripe
fruits and vegetables. Current methods for grasping such
delicate objects require custom sensing solutions combined
with adaptive force-control models [9]–[11] and are tested
on a limited set of items. LLMs thus provide an opportunity
to leverage their common-sense physical reasoning [12] to
produce grasp skills which are both force-adaptive and for
the open-world. This is particularly important for semi-
structured environments like supermarkets that are subject to
a constantly rotating stock or dealing with loose food items
such as fruits, vegetables, and pastries that come in a large
variety of changing shapes.

We propose DeliGrasp, an extension of LLM-supervised

robot learning to contact-rich manipulation, and posit that
LLMs can infer the physical characteristics of any arbitrary
gripper-object interaction, including mass, spring constant,
and friction. We formulate an adaptive grasp controller
with slip detection derived from the inferred characteristics,
endowing LLMs embodied with any current-controllable
gripper with adaptive, open-world grasp skills for objects
spanning a range of weight, size, fragility, and compliance.

We pair DeliGrasp with an open-world localization
pipeline which, given an “object description,” identifies
the object and an initial grasp position. The same “object
description” and associated “grasp verb” are the inputs
to DeliGrasp, which generates a grasp policy: executable
Python code controlling a gripper’s compliance, force, and
aperture as a complete grasp skill for the given description.

Experimentally, we observe that DeliGrasp performs suc-
cessful, minimally-damaging grasps on a custom benchmark
of delicate objects which traditional grasping methods are
not capable of. We also demonstrate how LLMs can leverage
compliance feedback from DeliGrasp policies in downstream
tasks such as picking ripe produce. These generalizable,
open-world grasping skills for minimal deformation as well
as real sensor data can be used to address difficult manipu-
lation tasks across environments and modes of HRI.

II. RELATED WORK

LLMs, with an internet-scale amount of common sense
information, are able to combine high-level task knowledge,
physical context, and robot affordances. For task and motion
planning, LLMs can generate navigation and pick-and-place
instructions to complete complex and novel tasks [1]. LLM
code-writing further augments robot capabilities with closed-
loop control [2], new skill generation [3], and translating
language to robot parameters for low-level dynamic control
[4]. In conjunction with learning methods [8], [13], LLMs
have also shown semantic understanding of grasping such as
identifying appropriate grasp locations [6], [7], [14] and have
been fine-tuned on object’s physical properties to improve
manipulation performance [15], but neither method addresses
grasping dynamics requisite for delicate grasping.

Grasping delicate objects can be achieved by relying on
the compliance of soft grippers, which still requires semantic
information for control if these grippers must grasp both
lightweight and heavy objects [16]. In this paper, we adopt
a control strategy that relies on interaction force and slip
velocity measurements from a rigid gripper similar to [9],
[10], [17], [18] to perform minimally deforming grasps and
to measure spring constants [19]. We use semantic object
descriptions together with an LLM to (1) select appropriate
parameters for robust and damage-free grasping of delicate
objects, and (2) use tactile inspection to classify relative fruit
ripeness and connect them back to common-sense policies
on how they can be consumed.

III. METHODS

As there does not exist a dataset focusing on delicate
objects, we construct our own preliminary delicate objects

dataset. We source dataset objects primarily from super-
markets, kitchens, and food pantries. Tabulated object mass
and object-specific thresholds for unsuccessful, “deforming”
grasps are shown in Appendix A.

Our pipeline takes as input a “grasp verb” and an “ob-
ject description”. For the delicate objects benchmark, we
use “pick” as the “grasp verb,” and the specific “object
descriptions” used are provided in A. Our perception method,
adapted from [6], takes the “object description” and se-
mantically segments the object from an RGB-D image with
OWL-ViT [20] and “Segment Anything” [21]. We crop the
corresponding depth image with the generated segmentation
mask, produce a point cloud object representing the seg-
mented object, and perform Principal Component Analysis
to compute a grasp pose that is aligned with the first three
principal axes as well as a minimum object grasp width [22].

For grasping, we use a UR5 robot arm with the open-
source MAGPIE gripper [23], which has a palm-integrated
Intel RealSense D-405 camera. The gripper is powered by
two separate Dynamixel AX-12 motors, which allow maxi-
mum current control, allowing us to implement simple torque
control (default output force is 4 N). Translating torque via
a four-bar linkage, the gripper force can be controlled and
sensed in a range from 0.15 N to 16 N, and has an aperture
range from 106 mm fully open to 0 mm fully closed (default
closure speed of 100 mm

s).

Fig. 3: Free body diagram describing gripper interactions with an
object at rest, adapted from [9].

A. Grasp Force Modeling

Fig. 3 shows the interaction between our gripper and an
arbitrary object with mass m and spring constant (compli-
ance) k. The gripper exerts a composite applied gripper force
Fa = Fleft+Fright that leads to a frictional force Ff = µFa,
where µ is the Coulomb friction coefficient between the
gripper and object [22] that counteracts the force of gravity
mg (g is the gravitational constant). For compliant objects,
approximated as ideal springs, we can additionally describe
the left and right gripper forces Fl,r = Fspringl,r = kxl,r,
where x is the compression of the grasped object.

Typically, object slip within a gripper can only be detected
after the gripper grasps an object at rest, the gripper begins
some upward acceleration alift, and an object begins slipping

with some downward acceleration aslip. Increasing Fa to
account for malift yields an adaptive minimum applied grasp
force Fmin = Fa which prevents slip and is minimally
deforming [17]: Fmin =

m(g+alift)
µ Conversely, when an

object is slipping with aslip, the applied force Faslip
=

m(g−aslip)
µ [9]. And when alift,slip are 0 and the gripper

and object are at static equilibrium, Fmin = mg
µ . Fmin can

then be arranged in relation to these quantities:

Faslip
<

mg

µ
≤ Fmin (1)

For the delicate objects dataset, we estimate a minimum
applied grasping force Fmin = mg

µ with a conservative,
uniform Coulomb friction coefficient of µ = 0.33 (A).

B. Problem Statement

Here m and µ, which determine successful (non-slip) and
minimally deforming grasp forces, as well as spring constant
k, are unknown values. Suppose then that a highly capable
reasoning agent can reliably determine values of said m,µ,
thereby approximating the lower bound of Fmin, and k.
These values form the basis of our force-adaptive algorithm
for minimally deforming grasps on delicate objects.

Given a gripper driven by a current-controlled servo motor,
we define a closed-loop force compensation controller: start-
ing from an estimated target aperture that corresponds to the
estimated object’s width w from RGB-D data, we increase
the gripper output force Fout and decreasing gripper aperture
x until sensing a contact force Fc greater than the target
Fmin [18]. To determine the gain terms, ∆Fout and ∆x,
i.e. how fast we close the gripper and ratchet up force, the
controller uses the agent-determined k and ∆x, we change
Fout by c · k∆x, where c = 0.1 is a dampening constant.
We describe the controller in Algorithm 1.

Algorithm 1 Adaptive Grasping with Slip Detection

Fc = SetGripper(x = w, 0)
while Fc ≤ Fmin do

Fout += c · k∆x
x −= ∆x
Fc = SetGripper(x, Fout)

We task an LLM (GPT-4) with predicting these quantities
for an arbitrary object. If such predictions are accurate,
performing minimally deforming grasps on a variety of
objects becomes algorithmically simpler and removes the
need for parameter tuning [18] and additional gripper sensors
[9], [11]. By default, we instruct the LLM to compute
Fmin = mg

µ and we do not account for alift, choosing to
err closer to object slip than deformation. However, we also
provide the LLM with agency to deviate from the default
Fmin depending on the “grasp verb” provided.

We query the LLM to define and generate grasps with a
dual-prompt structure similar to that of Language to Rewards
[4], with an initial grasp “descriptor” prompt which pro-
duces a structured description, which the subsequent “coder”
prompt translates into an executable Python grasp policy that

modulates gripper compliance, force, and aperture according
to Alg. 1. See Appendix D and E for the full prompts.

IV. EXPERIMENTS

Our robot experiment platform consists of a UR5 robot
arm and a MAGPIE gripper looking top-down on a table with
a palm-integrated Intel RealSense D-405 camera. We bench-
mark DeliGrasp (DG) against three grasp policies: closing
the gripper fully or until it is output force limited (F.L.),
closing the gripper to the visual object width determined
by our perception method, and an ablated DeliGrasp policy
which directly generates Fmin, ∆Fout, and ∆x without
first reasoning an object’s physical properties (DG-D). We
employ each grasp policy 10 times, objects placed randomly
within a 30 x 45 cm bounding area on a table, and do not
record attempts which receive faulty poses from perception.
TABLE I: Successful Minimally Deforming Grasps on Delicate
and Deformable Objects (10 trials per object)

ID Object DG DG-D Visual F.L.
Width

1 Paper Airplane 10 10 0 0
2 Cup (empty) 10 10 10 0
3 Dried Yuba 9 7 3 0
4 Raspberry 9 8 0 0
5 Hard Taco 9 7 5 0
6 Mandarin 10 10 10 10
7 Stuffed Toy 7 8 0 10
8 Cup (water) 10 8 3 4
9 Bag (noodles) 7 4 0 5
10 Avocado 9 7 4 0
11 Spray Bottle 6 5 0 3
12 Bag (rice) 0 0 0 2

DeliGrasp and the ablated direct DeliGrasp both perform
successful, minimally-deforming grasps that the visual-only
and hardware-limited grasp policies are not capable of on
objects like the paper airplane and raspberry. DeliGrasp
dominates hardware-limited and vision-only grasps in 8 out
of 12 objects, and is better or on par in 10 out of 12 objects
(full DeliGrasp details are provided in App. B)

We look closely at failure modes to better understand the
performance of each policy. Given two bounds of failure—
slip grasps and deforming grasps—we observe that, categor-
ically, force-limited grasps deform and vision-only grasps
slip. Force-limited grasps succeed only with robust, com-
pliant objects. Vision-only grasps succeed when the objects
are relatively stiff, but slight deviations in grasp position alter
the grasp width and contact area, leading to failures with the
taco, yuba, water cup, and avocado.

As we conduct a small number of trials, we cannot
conclusively explain the performance differences between
the full and ablated DeliGrasp policies, however, the Fmin

terms estimated by each DeliGrasp policy, shown in Table
II, potentially clarify such differences. DeliGrasp primarily
slips and performs only 3 deforming grasps, all of which
are minor, but sufficiently damaging, occurring once each
time with the yuba, raspberry, taco. For each of those

TABLE II: Full vs. Ablated DeliGrasp Estimated Fmin

ID mg
µ Fmax FDG FDG FDGD FDGD

(N) (N) (N) Err. (N) (N) Err. (N)

1 0.02 0.03 0.10 0.07 0.15 0.12
2 0.11 0.13 0.25 0.13 0.5 0.38
3 0.16 0.20 0.39 0.21 0.5 0.32
4 0.18 0.22 0.06 0.14 0.2 0.02
5 0.44 0.55 0.98 0.48 1.5 1.00
6 1.65 2.05 1.88 0.20 1.25 0.60
7 2.18 2.71 0.61 1.84 1.5 0.95
8 3.12 3.88 4.08 0.58 3 0.50
9 5.62 6.98 12.3 6.00 4 2.30
10 6.00 7.46 3.92 2.81 1 5.73
11 7.36 9.14 12.2 3.95 5 3.25
12 26.5 32.9 19.6 10.1 8 21.7

items, the ablated DeliGrasp-Direct estimates a higher Fmin

and deforms the same items at a higher rate, though also
with minor deformations. Conversely, the ablated DeliGrasp
estimates a lower Fmin for the cup of water, bag of noodles,
avocado, and resulting grasps slip more. Both policies slip at
high rates on the stuffed animal (grasped by the tail), spray
bottle, bag of noodles, and bag of rice. These objects are
non-linearly and/or very compliant and high volume, exerting
lever forces on the gripper that likely exceed Fmin.

DeliGrasp on average overestimates object mass by a fac-
tor of 1.5, and underestimates mass only for one object (App.
B), and we do not empirically measure spring constant of
objects. We do not comprehensively measure the consistency
of DeliGrasp m and µ predictions, but we observe that
re-generated m,µ predictions do not deviate significantly,
resulting in a range of 2

3Fmin → 4
3Fmin for the initial Fmin.

While this is a large range, DeliGrasp Direct is more volatile,
producing an even larger range, 1

3Fmin → 3Fmin. Since
mass, a common quantity, is more reliably overestimated
by an LLM, resulting adaptive grasp policies parameterized
from mass are more robust than policies directly parameter-
ized by an LLM with more erroneous predictions.

A. Sensorizing DeliGrasp to Pick Ripe Produce

DeliGrasp explicitly experimentally measures a spring
constant k while performing Alg 1: the adaptive grasp
controller checks for contact force Fc with each small motion
∆x, and k = Fc

∆x . Though this measured k (App. B)
shows that DeliGrasp is not able to accurately map object-
specific knowledge to spring constants, it can be utilized as
a compliance sensor in tasks such as appraising the ripeness
(a correlate of compliance) of produce items. We perform
this measurement on two assortments of produce: avocados
and tomatoes. When receiving the “grasp verb” of “check”
or “inspect for ripeness”, DeliGrasp bypasses the default
minimum grasp force value of mg

µ and manually sets a lower
Fc of 0.5 N for avocados and 0.2 N for tomatoes.

Qualitatively, the relative ordering of the measured k for
each item type corresponds with judgments from our own
human hand grasps. We query an LLM (GPT-3.5) with the

item name and compliance data, and show in Table III that it
is able to reason over and answer abstract, relative questions
about when to eat them. Further qualitative questions such
as “how” to eat a specific item “right now” yield dishes
appropriate for the ripeness of the produce (App. C).
TABLE III: Measured Produce Compliance and LLM Reasoning

Query Object k1 k2 k3 k4
(N/m) (N/m) (N/m) (N/m)

Avocado 65.1 143.5 335.4 —
Tomato 271.6 331.8 606.2 1559.

At a given time, which should I eat?

Next Avocado ✓
week? Tomato ✓
Right Avocado ✓
now? Tomato ✓ ✓
Three Avocado ✓ ✓
Days? Tomato ✓ ✓ ✓

When will this go bad? (days)

Avocado 3–5 4–6 5–7
Tomato 1–2 2–4 3–5 7+

V. DISCUSSION
We introduce DeliGrasp, which uses LLMs to 1) infer

semantic, common sense physical information and then 2)
generate adaptive grasp policies to grasp a variety of delicate
and deformable items such as ripe produce, that traditional
parallel jaw grippers cannot grasp. These inferred m,µ, k
characteristics enable more consistent control than direct esti-
mation of grasping forces, and we also leverage DeliGrasp’s
compliance feedback to measure produce ripeness.

In our experiments, we generate each grasp policy only
once without feedback, as typically a grasp failure leads
to irreversible deformation. However, finetuning on iterative
feedback in LLM-supervised human-robot control may im-
prove initial policy performance, which is of high importance
for delicate objects, and generate new, complex policies [5].
In our future work we plan to explore other potential down-
stream tasks in dense, cluttered, and unstructured settings like
supermarkets, home kitchens, and other such representative
domains, as well as the semantic spaces of “grasp verbs” and
“object descriptions” and how they affects generated policies.
Our adaptive grasping algorithm is gripper-agnostic, but we
have not validated it on other end-effectors. Furthermore,
the controller is employed only while robot is at rest, but
if synchronized with robot motion, our algorithm can be
extended for in-motion slip-detection [9], [10].

Additionally, we can use multimodal foundation models
like GPT-4V for DeliGrasp, thereby generating “grasp verbs”
and “object descriptions” from images, rather than using
hand-annotated inputs, and grounding grasp descriptions in
both visual and semantic physical knowledge. Mulitmodal
feedback and learning, in addition to augmented grasp con-
trollers and model fine-tuning on object physical concepts
[15], can then improve predictions and measurements of
mass, friction, and other physical properties.

REFERENCES

[1] M. Ahn, A. Brohan, N. Brown, Y. Chebotar, O. Cortes, B. David,
C. Finn, C. Fu, K. Gopalakrishnan, K. Hausman, A. Herzog, D. Ho,
J. Hsu, J. Ibarz, B. Ichter, A. Irpan, E. Jang, R. J. Ruano, K. Jeffrey,
S. Jesmonth, N. J. Joshi, R. Julian, D. Kalashnikov, Y. Kuang, K.-H.
Lee, S. Levine, Y. Lu, L. Luu, C. Parada, P. Pastor, J. Quiambao,
K. Rao, J. Rettinghouse, D. Reyes, P. Sermanet, N. Sievers, C. Tan,
A. Toshev, V. Vanhoucke, F. Xia, T. Xiao, P. Xu, S. Xu, M. Yan, and
A. Zeng, “Do as I can, Not As I Say: Grounding language in robotic
affordances,” arXiv:2204.01691, 2022.

[2] J. Liang, W. Huang, F. Xia, P. Xu, K. Hausman, B. Ichter, P. Florence,
and A. Zeng, “Code as policies: Language model programs for em-
bodied control,” in 2023 IEEE International Conference on Robotics
and Automation (ICRA), 2023, pp. 9493–9500.

[3] M. G. Arenas, T. Xiao, S. Singh, V. Jain, A. Z. Ren,
Q. Vuong, J. Varley, A. Herzog, I. Leal, S. Kirmani, D. Sadigh,
V. Sindhwani, K. Rao, J. Liang, and A. Zeng, “How to
prompt your robot: A promptbook for manipulation skills with
code as policies,” in 2nd Workshop on Language and Robot
Learning: Language as Grounding, 2023. [Online]. Available:
https://openreview.net/forum?id=T8AiZj1QdN

[4] W. Yu, N. Gileadi, C. Fu, S. Kirmani, K.-H. Lee, M. G. Arenas,
H.-T. L. Chiang, T. Erez, L. Hasenclever, J. Humplik, brian ichter,
T. Xiao, P. Xu, A. Zeng, T. Zhang, N. Heess, D. Sadigh, J. Tan,
Y. Tassa, and F. Xia, “Language to rewards for robotic skill
synthesis,” in 7th Annual Conference on Robot Learning, 2023.
[Online]. Available: https://openreview.net/forum?id=SgTPdyehXMA

[5] J. Liang, F. Xia, W. Yu, A. Zeng, M. G. Arenas, M. Attarian, M. Bauza,
M. Bennice, A. Bewley, A. Dostmohamed, C. K. Fu, N. Gileadi,
M. Giustina, K. Gopalakrishnan, L. Hasenclever, J. Humplik, J. Hsu,
N. Joshi, B. Jyenis, C. Kew, S. Kirmani, T.-W. E. Lee, K.-H. Lee,
A. H. Michaely, J. Moore, K. Oslund, D. Rao, A. Ren, B. Tabanpour,
Q. Vuong, A. Wahid, T. Xiao, Y. Xu, V. Zhuang, P. Xu, E. Frey,
K. Caluwaerts, T. Zhang, B. Ichter, J. Tompson, L. Takayama,
V. Vanhoucke, I. Shafran, M. Mataric, D. Sadigh, N. Heess, K. Rao,
N. Stewart, J. Tan, and C. Parada, “Learning to learn faster from human
feedback with language model predictive control,” arXiv:2402.11450,
2024.

[6] R. Mirjalili, M. Krawez, S. Silenzi, Y. Blei, and W. Burgard, “Lan-
grasp: Using large language models for semantic object grasping,”
arXiv:2310.05239, 2023.

[7] S. Jin, J. Xu, Y. Lei, and L. Zhang, “Reasoning grasping via multi-
modal large language model,” arXiv:2402.06798, 2024.

[8] A. Rashid, S. Sharma, C. M. Kim, J. Kerr, L. Y. Chen, A. Kanazawa,
and K. Goldberg, “Language embedded radiance fields for zero-
shot task-oriented grasping,” in 7th Annual Conference on Robot
Learning, 2023. [Online]. Available: https://openreview.net/forum?id=
k-Fg8JDQmc

[9] Z. Ding, N. Paperno, K. Prakash, and A. Behal, “An adaptive control-
based approach for 1-click gripping of novel objects using a robotic
manipulator,” IEEE Transactions on Control Systems Technology,
vol. 27, no. 4, pp. 1805–1812, 2019.

[10] M. Al-Mohammed, R. Adem, and A. Behal, “A switched adaptive
controller for robotic gripping of novel objects with minimal force,”
IEEE Transactions on Control Systems Technology, vol. 31, no. 1, pp.
17–26, 2023.

[11] Y. Gong, Y. Xing, J. Wu, and Z. Xiong, “Tactile-Based Slip Detection
Towards Robot Grasping,” in Intelligent Robotics and Applications,
H. Yang, H. Liu, J. Zou, Z. Yin, L. Liu, G. Yang, X. Ouyang, and
Z. Wang, Eds. Singapore: Springer Nature Singapore, 2023, pp. 93–
107.

[12] Y. Wang, J. Duan, D. Fox, and S. Srinivasa, “NEWTON: Are
large language models capable of physical reasoning?” in Findings
of the Association for Computational Linguistics: EMNLP 2023,
H. Bouamor, J. Pino, and K. Bali, Eds. Singapore: Association
for Computational Linguistics, Dec. 2023, pp. 9743–9758. [Online].
Available: https://aclanthology.org/2023.findings-emnlp.652

[13] H.-S. Fang, C. Wang, H. Fang, M. Gou, J. Liu, H. Yan, W. Liu, Y. Xie,
and C. Lu, “Anygrasp: Robust and efficient grasp perception in spatial
and temporal domains,” IEEE Transactions on Robotics (T-RO), 2023.

[14] C. Tang, D. Huang, W. Ge, W. Liu, and H. Zhang, “GraspGPT:
Leveraging semantic knowledge from a large language model for task-
oriented grasping,” arXiv:2307.13204, 2023.

[15] J. Gao, B. Sarkar, F. Xia, T. Xiao, J. Wu, B. Ichter, A. Majumdar, and
D. Sadigh, “Physically grounded vision-language models for robotic
manipulation,” 2024.

[16] N. Farrow, Y. Li, and N. Correll, “Morphological and embedded
computation in a self-contained soft robotic hand,” arXiv preprint
arXiv:1605.00354, 2016.

[17] H. Hasegawa, Y. Mizoguchi, K. Tadakuma, A. Ming, M. Ishikawa, and
M. Shimojo, “Development of intelligent robot hand using proximity,
contact and slip sensing,” in 2010 IEEE International Conference on
Robotics and Automation, 2010, pp. 777–784.

[18] K. Sullivan, H. Chizeck, and A. Marburg, “Using a rigid gripper
on objects of different compliance underwater,” in OCEANS 2022,
Hampton Roads, 2022, pp. 1–4.

[19] T. M. Caldwell, D. Coleman, and N. Correll, “Optimal parameter iden-
tification for discrete mechanical systems with application to flexible
object manipulation,” in 2014 IEEE/RSJ International Conference on
Intelligent Robots and Systems. IEEE, 2014, pp. 898–905.

[20] M. Minderer, A. Gritsenko, A. Stone, M. Neumann, D. Weissenborn,
A. Dosovitskiy, A. Mahendran, A. Arnab, M. Dehghani, Z. Shen,
X. Wang, X. Zhai, T. Kipf, and N. Houlsby, “Simple open-vocabulary
object detection with vision transformers,” arXiv:2205.06230, 2022.

[21] A. Kirillov, E. Mintun, N. Ravi, H. Mao, C. Rolland, L. Gustafson,
T. Xiao, S. Whitehead, A. C. Berg, W.-Y. Lo, P. Dollár, and R. Gir-
shick, “Segment anything,” 2023.

[22] N. Correll, B. Hayes, C. Heckman, and A. Roncone, Introduction to
autonomous robots: mechanisms, sensors, actuators, and algorithms.
MIT Press, 2022.

[23] N. Correll, D. Kriegman, S. Otto, and J. Watson, “A versatile robotic
hand with 3d perception, force sensing for autonomous manipulation,”
arXiv:2402.06018, 2024.

APPENDIX

A. Delicate Objects Physical Characteristics

For objects with empty entries in the “Input Phrase” column, we do not modify or add descriptions beyond the name
of the object. The squeeze bottle is a uniquely difficult object for a parallel jaw gripper to grasp. It is extremely sensitive
to grasp position as it has high stiffness at all but the “squeeze” point. However, if it is squeezed too hard, the bottle will
spill. The bag of rice is very heavy, though theoretically within the possible grasping force. However due to its extreme
compliance, successful grasps require as close to full-finger contact.

TABLE IV: Delicate and Deformable Object Properties

ID Object Width Mass mg
µ Fmax “Object Description” Input Invalidating

(mm) (g) (N) (N) to LLM & VLM Deformation

1 Paper Airplane 20 0.8 0.02 0.03 — crumples
2 Cup (empty) 75 3.6 0.11 0.13 ”empty paper cup” crumples, creased
3 Dried Yuba 30 5.5 0.16 0.20 ”yuba (dried tofu skin)” cracks, shatters
4 Raspberry 20 6 0.18 0.22 — juices, torn
5 Hard Taco 65 15 0.44 0.55 ”hard-shell tortilla” cracks, broken
6 Mandarin 50 56 1.65 2.05 — inelastic deformation
7 Stuffed Toy 28 74 2.18 2.71 ”tail of a stuffed animal” inelastic deformation
8 Cup (water) 75 106 3.12 3.88 ”paper cup filled with water” spillage
9 Bag (noodles) 90 191 5.62 6.98 ”plastic bag containing dried noodles” cracks
10 Avocado 60 204 6.00 7.46 — inelastic deformation
11 Spray Bottle 50 250 7.36 9.14 ”squeeze bottle filled with water” spillage
12 Bag (rice) 80 900 26.49 32.9 ”plastic bag containing rice” N/A

B. Full Details of DeliGrasp Performance on Delicate Objects Dataset

Computed ∆Fout which are less than 0.01 N are set to 0.01 N. Computed Fmin values below the force sensing threshold
of 0.15 N are set to that threshold when checking for slip or setting output force.

TABLE V: DeliGrasp Performance on Delicate Objects Dataset (10 trials)

LLM Inferred m,µ, k and Downstream Terms Mean Values of Experimentally Produced Terms
ID Success m µ k Fmin (N) ∆Fout ∆x xfinal xgoal Fout Time kmax k

(g) (N/m) = mg
µ (N) (mm) (mm) (mm) (N) (s) (N/m) (N/m)

1 10 5 0.5 20 0.098 0.01 2 11.9 7.8 0.54 4.23 332.46 184.91
2 10 10 0.4 50 0.25 0.025 5 67.83 59.5 0.5 2.94 707.93 389.76
3 9 20 0.5 200 0.39 0.04 2 24.74 19.82 0.6 4.08 240.27 157.69
4 9 5 0.8 50 0.063 0.01 1 15.4 5.98 0.28 7.26 97.46 60.96
5 9 50 0.5 1000 0.98 0.2 2 53.17 46.64 1.59 3.19 342.05 188.39
6 10 150 0.8 500 1.88 0.1 2 45.13 39.83 2.12 3.08 236.41 151.83
7 9 50 0.8 100 0.61 0.02 2 9.79 4.19 0.97 5.29 308.73 192.77
8 9 250 0.6 200 4.08 0.04 2 58.23 53.3 4.36 4.27 958.61 373.24
9 7 500 0.4 300 12.3 0.15 5 71.72 61.11 12.77 2.89 7484.7 4324.33
10 9 200 0.5 500 3.92 0.1 2 50.88 46.4 4.39 3.04 729.11 298.66
11 6 500 0.4 150 12.2 0.03 2 41.94 35.08 12.6 3.64 3456.4 1383.11
12 0 1000 0.5 200 19.6 0.1 5 35 27.5 20.8 5.7 13671. 6192.2

We also show the corresponding values for the ablated DeliGrasp-Direct policy. We did not record time, experimental k
values, or xfinal in these experiments.

TABLE VI: Ablated DeliGrasp-Direct Performance on Delicate Objects Dataset (10 trials)

ID Success Fmin ∆Fout ∆x xgoal Fout

(N) (N) (mm) (mm) (N)

1 10 0.15 0.05 1 4.48 0.98
2 10 0.5 0.2 1 57.4 0.922
3 7 0.5 0.3 2 8.6 1.14
4 8 0.2 0.1 1 6.4 0.83
5 7 1.5 0.2 1 49.2 2.3
6 10 1.25 0.5 5 32.4 2.01
7 8 1.5 0.5 2 3.0 3.2
8 8 3 1 5 49.6 3.18
9 4 4 1 4 52.8 6
10 7 1 1 5 47.2 2.2
11 5 5 2 2 25.0 7.1
12 0 8 2 5 105. 10

C. Ripeness Reasoning with LLMs

1. Asking ”how should I eat avocado k3” yields: sliced avocado, grilled avocado, salad toppings, stuffed avocado
2. Asking ”how should I eat avocado k1” yields: guacamole, avocado toast, sushi rolls, smoothies
3. Asking ”how should I eat tomato k4” yields: sliced for burgers, grilled or roasted, salsa, stuffed
4. Asking ”how should I eat tomato k1” yields: caprese salad, gazpacho, pasta sauce
We additionally observe that multimodal models like GPT-4V or OWL-ViT alone cannot reason ripeness over visual

images. We query GPT-4V with an image of the same items 5 times and request a ripeness ranking. For the 4 tomatoes,
GPT- 4V produces the same ranking each query, from most ripe to least ripe, of: [k4, k2, k3, k1], reasoning entirely on
the “redness” of the tomatoes. For the 3 avocados, it refuses to generate a ranking, citing a fundamental lack of sensory
capabilities.

OWL-ViT when directly queried for ”the ripest” or ”least ripe” produce arbitrarily detects items (sometimes the same
item) depending on the angle (and thus lighting, resolution, relative object size) of the captured image.

When we pair the spring constant data with the image in a query to GPT-4V, it ignores the visual characteristics and
reasons solely on the spring data.:
Query:
I have labeled 3 avocados for you between 0, 1, 2 and provide their average spring constants from an

initial ripeness check. Spring constants are inversely proportional to ripeness--a low spring
constant means a soft object, and high means stiff. Combining this information with the image,
please do the following tasks:

1. Estimate the ripeness of a ripe and unripe avocado.
2. Rank the given avocados by ripeness.
E. Using the estimated ripeness range, estimate when each one will go bad (avocados are stored in the

open at room temperature).

Spring constant data:
Avocado 1: 65 N/m
Avocado 2: 143 N/m
Avocado 3: 335 N/m

Response:
To perform the tasks, we need to use the given spring constants and the visual clues from the image to

estimate the ripeness and predict when each avocado will spoil. Typically, a ripe avocado has a
spring constant at the lower end because it is softer, while a less ripe or unripe avocado has a
higher spring constant because it is firmer.

0. Estimate the ripeness of a ripe and unripe avocado:
- A ripe avocado typically has a low spring constant, indicating softness, perhaps similar to Avocado
1, which has the lowest spring constant

- An unripe avocado has a high spring constant, as it’s stiffer, like Avocado 3, with the highest
spring constant

1. Rank the given avocados by ripeness:
- Avocado 1, with the lowest spring constant range 65, would generally be the ripest.
- Avocado 2, with a spring constant range 143, would be less ripe than avo1.
- Avocado 3, having the highest spring constant range 335, would be the least ripe.

So the ripeness rank from ripest to least ripe would be:
Avocado 1 > Avocado 2 > Avocado 3

2. Estimate when each avocado will go bad:
- Avocado 1, being the ripest, based on its lower spring constant, could spoil in about 2-3 days if
stored at room temperature.

- Avocado 2 is less ripe than avo1 and may take around 4-5 days to spoil at room temperature.
- Avocado 3 is the least ripe, with quite a high spring constant and could take upwards of a week to
spoil, potentially around 7-10 days at room temperature.

Please note that these estimates are quite rough and actual spoilage times can vary due to numerous
factors such as specific room temperature, humidity, and the avocado’s initial condition. The visual
clues are limited, but from the image, the physical characteristics that usually indicate ripeness
(dark skin, slightly yielding to gentle pressure) don’t provide significant additional information
beyond the spring constant data.

D. DeliGrasp Desciptor Prompt

The descriptor takes as input a “grasp verb”, “object description”, and “object width.” It outputs a structured summary of
the object, how it should be grasped, and physical characteristics of the object.

Control a robot gripper with torque control and contact information.
This is a gripper with two independently actuated fingers.
The gripper’s parameters can be adjusted corresponding to the type of object that it is trying to grasp.
As well as the kind of grasp it is attempting to perform.
The gripper has a measurable max force of 16N and min force of 0.15N, a maximum aperture of 105mm and a

minimum aperture of 1mm.
Some grasps may be incomplete, intended for observing force information about a given object.
Describe the grasp strategy using the following form:

[start of description]
* This {CHOICE: [is, is not]} a new grasp.
* This grasp should be [GRASP_DESCRIPTION: <str>].
* This is a {CHOICE: [complete, incomplete]} grasp.
* This grasp {CHOICE: [does, does not]} contain multiple grasps.
* This grasp is for an object with {CHOICE: [high, medium, low]} compliance.
* This grasp is for an object with {CHOICE: [high, medium, low]} weight.
* The object has an approximate mass of [PNUM: 0.0] grams
* The object has an approximate spring constant of [PNUM: 0.0] Newtons per meter.
* The gripper and object have an approximate friction coefficient of [PNUM: 0.0]
* This grasp should set the goal aperture to [PNUM: 0.0] mm.
* If the gripper slips, this grasp should close an additional [PNUM: 0.0] mm.
* Based on object mass and friction coefficient, grasp should initially set the force to [PNUM: 0.0]

Newtons.
* If the gripper slips, this grasp should increase the output force by [PNUM: 0.0] Newtons.
* [optional] This grasp {CHOICE: [does, does not]} use the default minimum grasp force force.
* [optional] This grasp sets the force to [PNUM: 0.0], which is {CHOICE: [lower, higher]} than the

default initial force because of [GRASP_DESCRIPTION: <str>].
[end of description]

Rules:
1. If you see phrases like {NUM: default_value}, replace the entire phrase with a numerical value. If

you see {PNUM: default_value}, replace it with a positive, non-zero numerical value.
2. If you see phrases like {CHOICE: [choice1, choice2, ...]}, it means you should replace the entire

phrase with one of the choices listed. Be sure to replace all of them. If you are not sure about the
value, just use your best judgement.

3. If you see phrases like [GRASP_DESCRIPTION: default_value], replace the entire phrase with a brief,
high level description of the grasp and the object to be grasp, including physical characteristics
or important features.

4. By default the minimum grasp force can be estimated by dividing the object weight (mass *
gravitational constant) by the friction coefficient: (m*g/(mu)).

5. Using knowledge of the object and the grasp description, set the initial grasp force either to this
default value or an appropriate value.

6. If you deviate from the default value, explain your reasoning using the optional bullet points. It is
not common to deviate from the default value.

7. Using knowledge of the object and how compliant it is, estimate the spring constant of the object.
This can range broadly from 20 N/m for a very soft object to 2000 N/m for a very stiff object.

8. Using knowledge of the object and the grasp description, if the grasp slips, first estimate an
appropriate increase to the aperture closure, and then the gripper output force.

9. The increase in gripper output force the maximum value of (0.01 N, or the product of the estimated
aperture closure, the spring constant of the object, and a damping constant 0.1:
(k*additional_closure*0.0001)).

10. I will tell you a behavior/skill/task that I want the gripper to perform in the grasp and you will
provide the full description of the grasp plan, even if you may only need to change a few lines.
Always start the description with [start of description] and end it with [end of description].

11. We can assume that the gripper has a good low-level controller that maintains position and force as
long as it’s in a reasonable pose.

12. The goal aperture of the gripper will be supplied externally, do not calculate it.

13. Do not add additional descriptions not shown above. Only use the bullet points given in the template.
15. Use as few bullet points as possible. Be concise.

E. DeliGrasp Coder Prompt

The coder takes as input the structured summary of the grasp and inferred characteristics and generates an grasp policy
which implements the adaptive grasping algorithm 1 and compliance sensing.

We have a description of a gripper’s motion and force sensing and we want you to turn that into the
corresponding program with following class functions of the gripper:

The gripper has a measurable max force of 16N and min force of 0.15N, a maximum aperture of 105mm and a
minimum aperture of 1mm.

‘‘‘
def get_aperture(finger=’both’)
‘‘‘
finger: which finger to get the aperture in mm, of, either ’left’, ’right’, or ’both’. If ’left’ or

’right’, returns aperture, or distance, from finger to center. If ’both’, returns aperture between
fingers.

‘‘‘
def set_goal_aperture(aperture, finger=’both’, record_load=False)
‘‘‘
aperture: the aperture to set the finger(s) to (in mm)
finger: which finger to set the aperture in mm, of, either ’left’, ’right’, or ’both’.
record_load: whether to record the load at the goal aperture. If true, will return array of (pos, load)

tuples
This function will move the finger(s) to the specified goal aperture, and is used to close and open the

gripper.
Returns a position-load data array of shape (2, n) --> [[positions], [loads]], average force, and max

force after the motion.

‘‘‘
def set_compliance(margin, flexibility, finger=’both’)
‘‘‘
margin: the allowable error between the goal and present position (in mm)
flexibility: the compliance slope of motor torque (value 0-7, higher is more flexible) until it reaches

the compliance margin
finger: which finger to set compliance for, either ’left’, ’right’, or ’both’

‘‘‘
def set_force(force, finger=’both’)
‘‘‘
force: the maximum force the finger is allowed to apply at contact with an object(in N), ranging from

(0.1 to 16 N)
finger: which finger to set compliance for, either ’left’, ’right’, or ’both’

‘‘‘
def check_slip(load_data, force, finger=’both’)
‘‘‘
load_data: the position-load data array from set_goal_aperture
force: the force to check if the contact force is met (in N), which is set by set_force()
finger: which finger to check the contact force for, either ’left’, ’right’, or ’both’
Returns True if the contact force is not reached, meaning the gripper has slipped, False otherwise (the

gripper has not slipped and has a good grasp).
Also returns the average and max force experienced by the gripper in the load data.

Example answer code:
‘‘‘
from magpie.gripper import Gripper # must import the gripper class
G = Gripper() # create a gripper object
import numpy as np # import numpy because we are using it below

new_task = {CHOICE: [True, False]} # Whether or not the task is new
Reset parameters to default since this is a new, delicate grasp to avoid crushing the raspberry.
if new_task:

G.reset_parameters()

[REASONING]
goal_aperture = {PNUM: goal_aperture}
complete_grasp = {CHOICE: [True, False]}
Initial force. The default value of object weight / friction coefficient.
initial_force = {PNUM: {CHOICE: [({PNUM: mass} * 9.81) / {PNUM: mu}, {PNUM: different_inital_force}] }}}
[REASONING for initial force choice]

additional_closure = {PNUM: additional_closure}
Additional force increase. The default value is the product of the object spring constant and the

additional_closure, with a dampening constant 0.1.
additional_force = np.max([0.01, additional_closure * {PNUM: spring_constant} * 0.0001])

Move quickly (without recording load) to a safe aperture that is wider than the goal aperture
G.set_goal_aperture(goal_aperture + additional_closure * 2, finger=’both’, record_load=False)

[REASONING]
[PREDICTION]
G.set_compliance(1, 3, finger=’both’)
G.set_force(initial_force, ’both’)
load_data = G.set_goal_aperture(goal_aperture, finger=’both’)

[REASONING]
[PREDICTION]
curr_aperture = G.get_aperture(finger=’both’)
applied_force = inital_force
slip_threshold = initial_force
slippage, avg_force, max_force = G.check_slip(load_data, slip_threshold, ’both’)

record spring constants over slip detection
prev_aperture = curr_aperture
k_avg = []

while slippage:
goal_aperture = curr_aperture - additional_closure
if np.mean(avg_force) > 0.10: # low-pass filter force readings so we don’t increase force when there

is no contact
applied_force += additional_force

G.set_force(applied_force, ’both’)
print(f"Previous aperture: {curr_aperture} mm, Goal Aperture: {goal_aperture} mm, Applied Force:

{applied_force} N.")
load_data = G.set_goal_aperture(goal_aperture, finger=’both’)

Report data after each adjustment
curr_aperture = G.get_aperture(finger=’both’)
slippage, avg_force, max_force = G.check_slip(load_data, slip_threshold, ’both’)

record spring constants over slip detection
distance = np.abs(curr_aperture - prev_aperture)
k_avg.append(np.mean(avg_force) * distance * 1000.0)
prev_aperture = curr_aperture

if complete_grasp:
curr_aperture = G.get_aperture(finger=’both’)
G.set_goal_aperture(curr_aperture - additional_closure, finger=’both’, record_load=False)
print(f"Final aperture: {curr_aperture} mm, Controller Goal Aperture: {goal_aperture} mm, Applied
Force: {applied_force} N.")

else:
G.open_gripper()

‘‘‘

Remember:
1. Always format the code in code blocks. In your response all five functions above: get_aperture,

set_goal_aperture, set_compliance, set_force, check_slip should be used.
2. Do not invent new functions or classes. The only allowed functions you can call are the ones listed

above. Do not leave unimplemented code blocks in your response.
3. The only allowed library is numpy. Do not import or use any other library. If you use np, be sure to

import numpy.
4. If you are not sure what value to use, just use your best judge. Do not use None for anything.
5. If you see phrases like [REASONING], replace the entire phrase with a code comment explaining the

grasp strategy and its relation to the following gripper commands.
6. If you see phrases like [PREDICTION], replace the entire phrase with a prediction of the gripper’s

state after the following gripper commands are executed.
7. If you see phrases like {PNUM: default_value}, replace the value with the corresponding value from

the grasp description.
8. If you see phrases like {CHOICE: [choice1, choice2, ...]}, it means you should replace the entire

phrase with one of the choices listed. Be sure to replace all of them. If you are not sure about the
value, just use your best judgement.

9. Remember to import the gripper class and create a Gripper at the beginning of your code.
10. Remember to check the current aperture after setting the goal aperture and adjust the goal aperture

if necessary.

11. Before checking for slip, remember to create two new variables, applied_force and slip_threshold,
set equal to the initial initial_force. Slip detection continues checking the unchanged
slip_threshold, but the applied_force increases.

12. Remember to reassign the goal aperture to the current aperture after completing the slip check for
complete grasps.

